Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
نویسندگان
چکیده
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an alpha carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Calpha-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Calpha-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T-->R and R''-->T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T-->R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R''-->T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R''-->T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R''-->T transition. The cochaperonin GroES plays a passive role in the R''-->T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T-->R and R''-->T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.
منابع مشابه
Signaling Networks and Dynamics of Allosteric Transitions in Bacterial Chaperonin GroEL: Implications for Iterative Annealing of Misfolded Proteins
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. They describe the response a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the Structural Perturbation Method (SPM), based on phonon propagation in solids, that can be used to determine the signal transmitting allostery wi...
متن کاملTenets of Nested Cooperativity
Title of Dissertation : ALLOSTERY AND GROEL: EXPLORING THE TENETS OF NESTED COOPERATIVITY Jennifer Suzanne Gresham, Doctor of Philosophy, 2004 Dissertation Directed By: Professor George H. Lorimer Department of Chemistry and Biochemistry Despite a wealth of structural and biochemical studies on the functional cycle of the E. coli chaperonins GroEL and GroES, no model proposed to date accounts f...
متن کاملReview: allostery in chaperonins.
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of coope...
متن کاملNested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL.
Initial rates of ATP hydrolysis by wild-type GroEL were measured as a function of ATP concentration from 0 to 0.8 mM. Two allosteric transitions are observed: one at relatively low ATP concentrations (< or = 100 microM) and the second at higher concentrations of ATP with respective midpoints of about 16 and 160 microM. Two allosteric transitions were previously observed also in the case of the ...
متن کاملAllosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations.
The Escherichia coli chaperonin GroEL, which helps proteins to fold, consists of two heptameric rings stacked back-to-back. During the reaction cycle GroEL undergoes a series of allosteric transitions triggered by ligand (substrate protein, ATP, and the cochaperonin GroES) binding. Based on an elastic network model of the bullet-shaped double-ring chaperonin GroEL-(ADP)(7)-GroES structure (R''T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 387 2 شماره
صفحات -
تاریخ انتشار 2009